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SECTION A

NONLINEAR INTERACTIONS IN SUPERFL UID DYNAMICS :
SUPERCR I T I CAL COIJN TERFLOW AND SHOCKWAVES

I. INTRODUCTION

With  the present final report the AFOSR support for the GALCIT research

on liquid helium fluid dynamics terminates. The three sections incl uded here

describe the work done during the last contractual period up to September 30,

1978.

It was the purpose 0f the program to investigate some aspects of the fluid

mechan ics of IHel l , in particular nonlinear phenomena such as turbulence and

shock waves an d the ir ef fect on the cr iti cal cond it ions in He l l.

The major accomplishments which resulted from this GALCIT research program

are l isted below. The larger part of the work was supported by contracts from

AFOSR wh ich are gratefu l ly acknowledged. A l ist of publi cations is included

with the report.

II .  PRINCI PAL ACCOMPL ISHMENT S

1. The development of the first cryogenic shock tube for the production

of strong shock waves. In this small (1” diameter) tube, shock Mach numbers of

M 42 in Helium gas have been reached. The cooling effect on density and vis-

cosity is such that the Reynolds number of the tube is very high and boundary

layer displacement effects in the shock wave propagation negligible. Indeed ,

to obtain similar Reynolds number at room temperature a tube about 1000 times

the present tube diameter would be required. (Of course, a tube at room temper-

ature would be restricted to relatively low Mach numbers because of real gas

effects, e.g., Ionization.) The potential use of this cryogenic shock tube has

not nearly been exhausted. To mention only one, a recent possibly important

application would be the study of wal l ablation in the wake of very strong

shocks , suggested by problems arising from the MX development.

L.  _ _ _ _ _  

_
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2. The extension of the cryogenic tube techniques to work with liquid

L 

Helium II led to the fi rst careful mapping of the nonl inear wave di agrams in

He II, involving both first sound and second sound shock waves. These measure-

ments permit the first rational comparison of theory and experiment for nonlinear

flow phenomena In LHe.

3. Ultra-second sound waves with frequencies up to 1 MHz have been used

as a velocimeter for He II counterfiow. The first recorded observations of

turbulent-like velocity fluctuations was carried out here using this technique.

This work was made possible by the development of superconducting temperature

sensors with io 8 °K sensitivity . Possible application to IR detection is clear.

Indeed , this second sound technique permitted the first direct measurements of

a flow veloc ity i n He II .

4. A similari ty rule was developed based on the two-fluid equation with

the additional Gorter-Mellink terms. This rule permits the reduction of all

known critical heat flow experiments in capillaries and tubes to a single number

reminiscent of a critical Reynolds number for laminar-turbulent transition In

cl ass i cal flu id mechan ics.

5. Critical counterfiow velocities and hence critical heat flow two orders

of magnitude larger than previously reported for similar geometries have been

measured in the wake of second sound shock waves.
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SECTION B

EXPERIMENTAL INVESTIGATION OF FIRST- AND SECOND-SOUND
SHOCK WAVES IN LIQUID HELIUM II

I. INTRODUCTION

An important aspect of the l iquid helium research performed

at GALCIT began with the initial investigations by Cummings (1973,

1976) of the production and propagation of finite—amplitude dis-

turbances——shock waves--in Liquid Helium II (LHeII). Current

efforts include attempts to both refine and expand upon these

initial measurements.

Using the two—fluid equations (Landau 1941) for the hydro-

dynamics of helium II, Khalatnikov (1952, 1965) has derived ex-

pressions governing the propagation of weak shock waves by con-

sidering terms up to second order in the relative velocity w

between the normal fluid and superfluid ( w = — ). The

present experiments involve the development of techniques which

make it possible to assess the accuracy of Khalatnikov ’s predic-

tions and to estimate the magnitude of the temperature discon—

tinuities associated with shock waves in LHeII.

II. EXPERIMENTAL APPARATUS AND PROCEDURE

Cryogenic Shock Tube

The 1—inch diameter cryogenic shock tube (Liepmann , Cummings ,

& Rupert 1973; Cummings 1973, 1974). shown in Figure 1. is used

to generate a gasdynamic shock which propagates through saturated

helium vapor and subsequently reflects from the upper surface

of a column of LHeII at the lower end of the test section. A
I

gasdynamic Bhock produces jumps in temperature and pressure which

‘~~ 

t_ ~~~
_ •_  -
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are functions only of the shock Mach number. These well—defined

jumps provide initial conditions for the production of shocks

in the liquid. Beginning with a measurement of the Mach number

of the incident gasdynamic shock , one can use the shock jump

relations for an ideal gas and the Khalatnikov model for weak

shocks in LIIeII, together with matching conditions for pressure

and velocity at the vapor—liquid interface, to predict wave tra-

jectories in the liquid. These theoretical trajectories may

then be compared to experimentally observed values.

x—t Diagrams

The reflection of a gasdynamic shock from the vapor—liquid

interface results in a complicated set of finite—amplitude waves

whose trajectories are best illustrated by the wave diagram shown

in Figure 2. In this diagram, the arrival time of the waves,

t, is plotted as a function of position, x. The arrival of the

incident gas shock at the liquid surface results in a reflected

gasdynamic shock with velocity URI and produces two transmitted

shocks which propagate into the liquid. One of these shocks

is a pressure, or first—sound , shock with velocity C1(O); the

other shock is a temperature , or second—sound , shock with velo-

city c2(6). Compression of the liquid by the pressure shock

results in a bulk fluid velocity. u6, which is evidenced by the

motion of the vapor—liquid interface. The pressure shock is

ref lected from the solid endwall and returns to the liquid sur-

face where it is re—reflected as an expansion in the liquid and

produces a transmitted gasdynamic shock in the vapor. The re-

flected and re—reflected pressure waves in the liquid interact

with the temperature shock and produce changes in the bulk fluid

velocity.

- •—~ - —‘- —--—----‘ 
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Detector Array

The current experiments involve the accurate measurement

of the arrival times of the various waves at detectors located

at different heights above and below the liquid surface. Two

types of detector are used. Side—mounted, carbon—card detectors,

similar to those used in the original work of Cummings, are used

to measure the arrival of the incident and reflected gasdynamic

shocks. To measure the arrival of either the incident gas shock

in the vapor, or the arrivals of the various waves in the liquid ,

superconducting thin—film gages have been developed to replace

the carbon—flake detectors used by Cummings. The new gages are

produced by evaporation of aluminum in an oxygen atmosphere and

are located on the tips of pyrex rods which project upward from

the shock tube endwall. The overall array of detectors repre-

sents a blockage of 13% of the cross—sectional area of the shock

tube.

The superconducting gages afford major improvements in fre-

quency response and sensitivity over previous detectors. Sensi-

tivities as high as 0.1 to 1.0 V/’K and frequency response on

the order of 1.0 MHz have been achieved. The high sensitivity

of the present gages is evidenced in Figure 3 which shows the

voltage drop across a film as a function of temperature. Each

curve in Figure 3 represents the superconducting transition for

a different value of externally—applied magnetic field. By in-

creasing the magnetic field , the transitions are biased to lower

temperatures. For a given set of shock tube runs, the external

magnetic field is adjusted such that the mid—transition point

of the films corresponds to the desired initial temperature and

pressure. For the film calibration shown in Figure 3. the mid—
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transition sensitivity is seen to vary from 0.13 V/0K for the

highest transition temperature to 0.039 V/0K for the lowest tran-

sition temperature.

Liquid Level Detection

The high sensitivity of these films provides the previously

unrealized ability to accurately determine the liquid level in

the shock tube prior to actually firing the shock. This new

level detection scheme involves the generation of a second—sound

pulse at the endwall and the subsequent measurement of the time

of flight of the pulse from a submerged superconducting film

to the free surface and back to the film. Knowledge of the sec-

ond—sound wave speed and the height of the detector above the

endwall then permits straightforward calculation of the liquid

level. Figure 4 shows a typical pair of oscilloscope traces

obtained during a level-detection run. In this case, the free

surface of the liquid is 44 mm above the endwall; film#3 is 38 mm

above the endwall; and film*4 is 34 mm above the endwall. The

passages of the upward—travelling pulse and the returning reflec-

tion are clearly evident in each trace.

Detector Response

Typical outputs from the present set of shock tube detec—

tore following the actual firing of a gasdynamic shock are shown

in Figures 5 and 6. The upper two traceu in Figure 5 show the

response of two superconducting gages which were initia J.y above

the liquid surface to the passage of the incident gasdynamic

shock. The bottom trace in Figure 5 shows the response of the

carbon—card detector to the passage of the incident and reflected

gasdynamic shocks. The traces shown in Figure 6 correspond to

the outputs of two superconducting films initially located below

_ _ _  _ _ _ _  --~~~~~~~~~
-
~~~~~~~~~~~~ -- - - - -~~~~~

- - -  
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the liquid surf ~ ct~. The filTn#3 output indicatez the sequential

arrival of the incident pressure shock , temperature shock , re-

flected pressure shock, and re—reflected expansion. Film*4,

which was initially located somewhat further below the liquid

surface than film~3, indicates the sequential arrival of the

incident pressure shock, reflected pressure shock, re—reflected

expansion , and temperature shock. The detector signals quali-

tatively verify theoretical predictions that, within the super-

fluid , the temperature decreases through the pressure shock and

increases through the temperature shock.

III. EXPERIMENTAL RESULTS AND OBSERVATIONS

X — T Diagrams

Sets of photographs similar to those shown in Figures 5

and 6 are taken for a variety of liquid depths at a given sat-

uration pressure and temperature. Arrival time data obtained

from these photographs then permits the construction of x—t dia-

grams by use of the similarity parameters x and , given by:

_ L - x
L

t - TT = 
L ($.Lsec/cm)

where x = height above endwall (cm)

t = arrival time (~sec)

L = initial liquid depth (cm)

T = arrival time of incident gasdynamic
shock at li quid surface (~isec)

At the present time accurate x— T diagrams have been construc-

ted for seven initial liquid temperatures and pressures. These

diagrams are shown in Figures 7—13 for the cases = 1.522,

1.665, 1.751, 1.832, 1.989, 2.031, and 2.095°K, respectively.
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The Mach number of the incident gas shock ranged from M
s 

= 13.0

for the case = 1. 522°K, to Ms = 6.52 for the case = 2.0950K.

• All of the diagrams clearly indicate arrival time data for the

various waves discussed earlier. Excellent repeatability of

the arrival time measurements is evident in each ~ — T diagram.

Linear f i t s  to the data indicate standard deviations in experi-

mentally measured velocities on the order of one to two percent.

Wave Velocities

Figure 14 is a comparison of experimental wave velocities

obtained from the X — ¶ measurements to theoretical velocities

computed on the basis of the strength of the incident gas shock.

As mentioned earlier , the theoretical computations treat the

vapor as an ideal gas and assume that the propagation of a first—

sound shock is adequately modeled by Khalatnikov ’s second—order

theory. The theoretical velocity of a second—sound shock in

a particular region is taken to be equal to the sum of the bulk

fluid velocity of that region and the second—sound velocity cor-

rected for the region pressure.

In Figure 14 , the ratios of experimentally observed velo-

cities to theoretical velocities are shown. Good agreement be-

tween theory and experiment is obtained for the incident pres-

sure shock velocity, c1(O). Measurements of the reflected pres—

sure shock velocity, C1 (6) ,  and the temperature shock velocity,

c2(6), are low and exhibit decreasing agreement with theory as

the initial temperature and pressure are increased. The bulk

fluid velocity, u5 
= u6, is obtained from the experimental data

by taking the inverse slope of the line connecting the origin

of the ~ — r diagram to a point corresponding to the intersection

of the reflected pressure shock data with the re—reflected ex—

~~~~- —‘—- --- ---- . - - -
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pansion data.  The resultant values obtained for u 5 
= u6 deviate

significantly from theory——they are 30—58% low for the cases

examined.

Phase Diagram

The initial conditions for each set of X— T measurements

and the subsequent states of the liquid following the passage

of the pressure waves are best illustrated by the phase diagram

shown in Figure 15. Each run starts with the liquid—vapor sys-

tem in equilibrium along the saturated vapor curve. The inci-

dent pressure shock raises the pressure of the liquid to

the reflected pressure shock increases the pressure still fur-

ther to p7, and the re—reflected expansion reduces the pressure

to p8. To first order it is assumed that there is no tempera-

ture change across these waves.

Phase Transitions

From the phase diagram, it is apparent that for initial

conditions sufficiently close to the lambda transition the pres-

sure jump across either the incident pressure shock or ref lected

pressure shock is suffic ient to cause a change in phase of the

liquid from LHeII to LHeI. This predicted change in phase has

been experimentally evidenced by detector outputs indicating

the disappearance of temperature shocks in the wakes of sufficient-

ly strong pressure shocks. For the case of 2.0950K, shown

in Figure 13, the ~~~~~ measurements indicate the disappearance

of the temperature shock following the passage of the incident

pressure shock through the liquid. This result is significant

and indicates that the transition from Lifell to LHeI occurs within

the propagating pressure shock.

Observation of the phase diagram also indicates the poesi—

_
—. — . --—-——.‘•-—--——-- - - — ---•.-—---,- —— — 
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bility of firing gasdyn antic shocks of suf ficient strength to

-• drive the state of the fluid across the melting line into the

solid region from either the LHeII or LHeI reg ion. Experiments

of this nature would involve straightforward modification of the

present apparatus to achieve significantly higher driver pressures ,

p4, than the present range of p4 
= 4—5 Atm. For p6 to exceed

the melting pressure, initial estimates indicate required values

of p4 greater than 30 Atm for T0 = T1 
= 2.l0°K, or greater than

45 Atm for T0 
= l.650K. If the reflected pressure shock is in-

stead relied upon to produce values of p7 that surpass the melt-

ing pressure, the minimum requirement for p4 drops to roughly

10 Atm. Optical techniques may be employed for investigations

of condensation phenomena associated with stronq pressure shocks.

Temperature Jumps & Relative Velocity Estimates

Referring to Landau and Lifshi tz (1959, p. 519), the rela-

tive velocity produced by passage of a first—sound wave may be

expressed to first order in the temperature jump as

w = v — v
fl S P~~~10

- where s = entropy

p 
= density
= normal fluid density

C10 = first—sound wave speed

— temperature jump

In the present set of measurements, values of ~T ~ —30 X 1O 3 0K,

which correspond to w ~ —0.15 rn/eec, were obtained for the m ci—

dent pressure shock.

In the case of second—sound shocks, Khalatnikov (1965, p. 83)

has written

- -
- 

-- ~~~~~~~-
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~~~~~~~~ ~T
~n 2 O

where C20 = second—sound wave speed

Using side—mounted aluminum oxide films for the case = l.788°K,

shock tube measurements indicate ~T = 25 x l0~~ 
0K for the second—

sound shock produced by reflection of a gasdynamic shock from

the free surface of the liquid. This temperature jump corresponds

to w = 2.2 m/sec——a value which agrees well with critical velo-

city measurements of w~ = 2.51 rn/Sec obtained using temperature

shocks produced by delivering electrical pulses to a thin—film

heating element (Rogers 1978). These values of w~ are two or-

ders of magnitude larger than those reported for steady channel

flow (e.g.. see Dimotakis 1974).

IV. CONCLUSIONS

The experimental work reported here demonstrates the de-

velopment of instrumentation and techniques suitable for mak-

ing accurate and repeatable measurements of shock arrival times

and estimates of shock—induced temperature jumps in LHeII. Ar-

rival time measurements indicate consistent discrepancies be-

tween theoretical predictions and experimental results for u6

and the wave trajectories. The discrepancies may be related

to shortcomings of Xhalatnikov’s second-order theory or to mass-

transfer effects at the vapor—liquid interface. These possibili-

ties are being further examined. Measurements of temperature

jumps associated with first—sound shocks show approximate agree-

ment with theoretical predictions. Experimental measurements of

temperature jumps associated with the coupled second—sound shock

indicate limitation of the magnitude of the temperature discon—
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tinuity by the development of a critical relative velocity on

the order of 2.2 rn/sec.

- 

-
~ The present experimental data indicate that a phase tran-

sition from LHeII to LHeI can be produced by sufficiently strong

first—sound shocks for initial test conditions close to the

lambda transition. Using stronger shocks, it should be possi-

ble to drive the state of the liquid across the melting line

into the solid region from either the L}IeII or LHeI reg ion.

Due to the relatively low pressures associated with the solid

phase , liquid helium is a promising candidate for potential

studies of shock—induced liquid—solid condensation.
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Section C

LIST OF SYMBOLS

C~ , f i r s t  soun d speed

C,0 second sound speed

specific heat at constant pressure

C specific heat at cons tant volume
V

M Mach number

p pressure

heat flux

s specific entropy

T temperature

v bulk fluid veloci ty

v~ normal fluid velocity

v 5 superfluid velocity

w relative velocity

L shock thickness -

p mass density

chemical potential

normal fluidn

~ super fluid

_ _  _ _ _ _ _ _ _ _ _ _ _
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I. INTRODUCTION

Background

Liquid helium, when cooled below 2. 170 K, experiences a

so- called ).- transition from liquid helium I to liquid helium U.

Helium I behaves as a classical fluid; however, helium U exhibits

non-classical behavior which can only be explained by using the

concepts of quantum mechanics.

Below the X-point , li quid helium behaves as if it were

composed of two interpenetrating, noninteracting fluids: superfluid

carrying no entropy and having no viscosity and normal fluid having

entropy and viscosity. This two-fluid model has been used to

explain many of the anomalous properties of liquid helium II.

From this two-fluid model , one can deduce two distinct forms

of wave motion. When the two fluids move in phase , an ordinary

pressure or sound wave is produced. However, when the two fluids

move out of phase , a temperature wave, termed “seconc~ sound”,

is t rans mitt ed and is unique to liquid helium II. As with ordinary

press ur e waves , the temperature wave s are non-linear in that their

propagation speeds are not , in general , equal to their acous tic

speeds. Hence finite amplitude perturbations can steepen to form

shock waves.

The importance of these tcmperature waves can bcst be

realized by a consideration of heat transfer by the liquid helium.

Liquid helium II exhibits the ability of t ransferr ing large amounts of

heat at practically zero temperature gradient. This phenomenon,

- -  —4- —-— - - - U- - - ~
S - ~~~~~~~~~ — - -—5-. 

-
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which is very much like that of an ordinary heat pipe , is of great

impor tance in the cooling of superconducting magnets and othe r

devices. However , it has been found that for heat fl uxe s beyond a

critical value , this “supra heat conduction ” breaks down , for which

an adequate explanation and description does not yet exist.

Much work has been done , both experimentally and anal ytically,

in investigating second sound waves. In particula r , second sound

shock wave s were f irs t  observed by Osborne ( 1 )  in 1950. Later ,

Dessle r and Fairbank (2)  in 1956 studied the amplitude dependence

of the second sound velocity by using a small amplitude marker

pulse , f i rs t  alone , and then superimposed on a larger  amplitude

carr ier  wave and comparing the times of flig ht.

Several optical investigations have been carried out. In 1967 ,

Coulter , Leonard and Pike (3) used focussed shadowgraph and

schlieren technique s to study the heat t ransport  from a wire to

helium U and were able , althoug h with very poor resolution , to see

second sound wav€. s. More recently, Gulyaev (4 , 5) in 1969 and

197 0 optically st udied large amplitude second sound using a schlieren

system and constantan ribbons spaced 1 mm apart.

Cummings (6) in 1975 and late r Cummings et al. (7)  iii ~)77

studied both f i rs t  sound (pressure ) and second sound shock waves in

helium U by using a speciall y constructed cryogenic shock tube to

generate both pressure and temperature shocks and then later by

electrically pulsing a heater and measuring the time of flight of the

temperature shock waves produced.

The present investigation is an attempt to extend these results
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with special emphasis on studying the critical breakdown of the

superfluid heat conduction properties.

Theoretical Formulation

To develop the hydrodynamic equations of liquid helium II,

we will follow Landau (8 , 9) and conside r the liquid helium II as

composed of two fluids , the superfluid (denoted by subscript s)

and the normal fluid (subscript n). We assume that the density of

the liquid helium can be written as the sum of the superflui d density

and the normal flui d density

p p5 + p~

Also , the momentum density can be written as the sum of the

superfluid and normal fluid momentum densities

.4 -4 -4 .4
j  = pv p5v5 + pnvn

Then , neglecting dissipative processes, the two-fluid

conse rvation equations of mass , momentum and entropy can be

written in the usual way

MASS ~~~~~~~~ 3~~~ o

MOMENTUM ~~~~~~~~~~~~~~~~~~~~~ = 0

ENTROPY ~~~ + V.  (ps~~~) = 0

4 4
4 4 4  4 4where IT p5v5v5 + p~v5v~ + p

- a- —--~- — - -

. 5
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3
and i is the identity tensor .

Two more equations are necessary to close the system.

Hence , along with an equation of state , we may write an equation

of motion for the superfl uid alone . Since the superfluid is an ideal ,

irrotational fl uid , we may write

x = 0

Consequently, ? is the gradient of a scalar potential , and

thi s pote ntial can be identified as the chemical potential per unit

mass , ~ . Then the superfluid equation of motion can be writ ten as

SUPERFLUID a?
MOTION 

~~~~ 
+ 

~ v: 
÷ = 0

The boundary conditions at a solid surface require that the

tangential component of vanish from the no-slip condition , ‘- he

normal component of the mass flux j  vanish since t!iere can be no

mass flux throug h the surface , and the normal component of heat

flux = p a T be continuous . The set of equations , togethe r with

the boundary conditions , constitute the two-fluid hydrod ynamic

model for liquid helium II.

In order to extract the acoustic speeds for f i rs t  and second

sound , we linearize the hydrodynamic equations. With ‘~ denoting

the relative velocity between the normal fluid and superfl uid ,

- ?~, the linearization is performed by assurning~ that ?

and are small , and considering small perturbation~ in p, p,

T , and s about their equilibrium values. The linearized equations

- —--~~~~‘ --- -
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can then be written

0

+ ~~p = 0

~~~~~+ ~~~~~~~~~~~ ?~~ = 0

.4
av

S ~~—

~~~~~

- + V~~L = 0

These four equations can be reduced to two wave equations by

using thermodynamic identities for ~ and p, and

1 V2p
a t2

~~~ V~Ta t 2 \P~~/

By assuming fluctuations proportional to e~~~
(t - x/C)  where

C is a wave speed , the equations can be reduced to

L 
~~~~~~~~~~~~~~~~~ 

C~, j ~~ 
C,~, ‘~ ‘/T

which has solutions , with (
~

) (
~

) from Cp Cv for

liquid helium II,
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2 
— ~s Ta2

n p

The first  is the familiar sound speed while the second is the

second sound acoustic speed. For first  sound, the density or

pressure fluctuations can be seen to be first  order and

the entire liquid moves as a whole ; while for

second sound the entropy or temperature fluctuations are fi rs t

order and 3

’ and are approximately zero : the two fluids

(normal and super) move in opposite directions.

Khalatnikov (10) determined the governing equations and jump

conditions for both first and second sound shock waves by expanding

the thermodynamic variables p, 8 , and ~ in terms of p, T,

and the relative velocity w, and retaining terms of order w2 . For

temperature discontiiiuitie, , Khalatnikov found that the second sound

shock speed C2 can be expressed as - -

c2 = c~~ + ~~~~ (ce, ~
)]

and

w = (..L .. L.~~~~~T

\~ n 
c30/

Recall that C20 is the second sound acoustic speed and

was found to be -

-

~1 ______ _______ 

_____________________________________________________________

—

~~~~~- .—.—..—.- --- --4— _—___
~~ 

-. 
- ,..
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Ta2

\ f l  P

The non-linearity of the second-sound wave can easily be seen

from the expression for C3 since the wave speed depends on the

temperature jump AT. Note that the coefficient of the AT term

changes its sign for 1.870 K ‘C T ‘C 2. l7°K and hence it is possible

for a negative AT to propagate as a shock wave in this temperature

range.

The heat flux in the second sound wave, as stated above, can

be expressed as

p s T v .

From the definition of the relative velocity ~~~~ = - and

3
4 

= + p1~?~ 
= 0 for pure counterfiow (as is the case for

second-sound waves; i.e., no net mass flow), the heat flux can be

written in terms of w

p s T w
5

Hence a critical heat flux implies a critical relative velocity and

vice versa.

In an attempt to explain the sudden appearance of this critical

heat flux, Gorter and Mellink (11) postulated a mutual friction

mechanism between the super and normal fluids with a friction force

proportional to w3 and appended such a term to the hydrodynamic

equations. Many measurements have been made of thia critical

.. —----

~

— - -  — - —-U—-—  — 

~~~

-
‘

- -

~~

---- —-5-
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counterfiow, all done in narrow channels with steady flow. In an

attempt to correlate these previous measurements, Dimotakia (12)

derived a relatively simple similarity law from a dimensional

consideration of the hydrodynamic equations with the mutual friction

terms added. For steady flow in channels , this law implies a

critical value for the counterfiow velocity w~ and hence for the

critical heat flux Q as
C

w
~
d T T p 9 A

where d is the diameter of the tube and A~ is the coefficient in the

Gorter-Mellink term, given by the empirical formula (13)

log~~A(T) 1.10 + 3.12 1og~, T +

The aims of this investigation, then, are to quantify, with

experimental dac.a, the non-linearity of the second sound shock

speed and to study the critical heat flux phenomenon discussed above.

Second sound shock waves are ideal for this purpose as the shock

speed (and hence amplitude) is dependent on the heat input. Con-

sequently, for a known heat input pulse, a nieasurable and repeatable

wave is produced. Since all previous measurements of critical

counterflow have been done with steady flow, an investigation can be

made into the effects of nonsteady heat transfer( using these

temperature shock waves) on the critical counterfiow velocity. These

results can then be used to determine the validity of the Dirnotakis

I

_-4 - -— _.__ _

~

__ _ _ 
~~

- - -——-- -- —
~ 

- -- -- ——5- - ——— — 
-
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similarity law in nonsteady flow.
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U. EXPERIMENTAL APPARATUS

Shock Tube

The method chosen as the most practical for producing the

second sound shock waves consisted of electrically pulsing a suitable

heating element and following the wave thus produced as it travels

along a tube. Since , from the two-fluid model, heat is convected

away by the normal fluid, and the total mass flux in the tube is zero,

a counterflow is set up when the heating element is pulsed, creating

a temperature wave.

The “second sound shock tube” designed and constructed for

this investigation consists of a one inch square cross section

Plexiglas tube with provisions for a heater at one end and

temperature detectors at the opposite end and also along one sidewall.

The shock tube is shown in Figure 1. The heater mounts on the

flange at the bottom and sealing is attempted using a silicon rubber

“gasket” . Detectors, which will be discussed bt’low, can be

mounted on the top of the four inch long tube , for cndw.~1t measure-

ments , and also along the removable sidewall by spring clampi ng a

glass sensor slide in place . Since all s t ructural  parts are

constructed from Plexiglas , there can be no differential shrinkage

and hence all angular alignments are maintained when the shock

tube is cooled to liquid helium temperatures. The entire shock

tube assembly is immersed in liquid helium and since it is not

completely scaled , the liquid helium can fill the tube . All work is

(lone at the saturated vapo r pressure  with the height of liquid above.-f
_
- t 

____

__

_______________________________________

I ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~ — - - - .-—- 
~~,
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the tube providing enough hydrostatic p ressure  above SVP to allow

the fir ing of at least smaller heat pulses without signi f icant  boiling .

Heater

Several considerations affected the design of the heating

element used to produce the second sound shock waves. First , the

element should be capable of withstanding large voltage pulses , on

the orde r of 100 - 200 volta . Second , the heate r must have a very

fast time response in orde r to closely follow the shape of the voltage

input . Finally, the heater assembly must be able to survive

repeated cycling to liquid helium temperatures .

In order to get the necessary time response , it was decided to

use a thin film element as the heater.  After much experimentation

with di f ferent  substances , it was found that  Nichromc , vacuum

evaporated onto a quar tz  substrate to a th ickness  of approximately

1000 angstroms ,gave the best results in terms of film electrical

resistance (the orde r of 10 ohms ) and durability. Quartz was

chosen as a substrate for its good thermal properties , especially

its strength when cooled to liquid helium temperatures .

Electrical contact to the heater film was accomplished by

evaporating 1000 A thick coppe r pads at the edges of the Nichrome

film and attaching the input wire leads by mechanical clamps ,

using coiled i ndium wire between the clamp and the evaporated

coppe r pad. Thi s method of attaching the leads prove d very

satisfactory and gave no major probloms. Sufficient force could be

applied to compress the indium wire to insure electrical contact

-i 

- -.~~~~ .- a- —-~~~~~~~~~ - U— 

~

--:

. 
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— when cooled to liquid helium temperatures.  A photograph of a

typical heater appears in Figure 2.

The electrical heater pulse is created by a specially designed

pulser , capable of generating pulses of up to 100 volts amplitude

and dura tion r anging from several microseconds to over 10 milli-

seconds . Furthermore, the hi gh vol tage pulser can follow any

input waveform, in order to see the effects of a slowly rising heat

pulse on the shock wave produced. An oscilloscope trace of a typical

voltage pulse is shown in Figure 3.

Detectors

In orde r to measure the temperature amplitudes of the second

sound shock waves, it was decided to follow an earlier development

by Laguna (14) and use superconducting thin films with adjustable

transition temperatures. Diffe rent superconducting mate rials and

techniques were tried with varied success, including tantalum on

titanium, aluminum oxide, and tin on gold, all deposited on various

substrates. The tantalum on titanium deposited on silicon proved

to be the mo st durable , and afte r repeated cycling in liquid helium,

showed no sign of degradation. Howeve r , the final detectors used

which gave the best results , were gold evaporated on tin , deposited

on a quartz or pyrex glass substrate . The reasons for choosing the

tin-gold film will be discussed below. Pure tiu is vacuum evaporated

to form a film 1000 A thick. Then 250 A of gold is deposited on the

tin and the combination is the n photo-etched following a technique

used by Laguna (14)  to form the actual detector. The detector

- L _- -- _  - - - _ _
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consists of a strip of this gold-tin combination , 0. 025 mm wide and 
-

10 mm long , with pure tin superconducting leads to make connections

to the lead-in cables. These connections are made with pressed

indium. A photograph of a typical detector slide is shown in

Fig ure 4. The basic transition temperature of these superconducting

thi n films is determined by the ratio of gold to tin (pure tin

transitions at 3. 740 K) ;  however , the transition temperature can be

lowered by applying a magnetic field to the film , and by this means

the transition temperature can be set to whatever point is desired.

The temperature variations due to the passage of the second sound

wave cause changes in the film resistance , and with a constant bias

current , changes in the voltage drop across it. By adjus ting the

magnetic field so as to have the film transition to its superconducting

state at the working shock tube temperature, as shown in Figure 5,
dVa large slope , ~~, of vol tage drop versus temperature and

therefore a large sensitivity, can be obtained. The detectors are

calibrated under static conditions by recording the voltage drop

ac ross the film for a fi xed magnetic field as the bath temperature

is slowly varied.

The signal f rom the detector is then amplified by an ultra low-

noise preamplifier (Princeton Applied Research Model 113), and a

voltage-time history of the second sound shock passage is recorded

on an oscilloscope.

Data Reduction Technique

In orde r to obtain the second sound shock speed , a digital

— S.-’ - - -s - — — — — - - - ~ — - ———-———r -_—- -— — - -  •_e.._-_ -_m—_4- -_ . - -—-—  — —-U - 

- — - ~~ - — -
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interval counter (Hewlett- Packard Model 5 326B Counter - Timer

DVM ) with a resolution of 0. 1 ~ sec.,  is used to measure the time

of flight of the wave , either from the heater to the detector , or

between two detectors .  For the heate r to de tector case , the

counter is triggered on by the voltage pulse into the heater and off

b y the sensor output . In the detector to detector case the counter

measures the time of flight of the wave between two detectors a

known distance apart.

Temperature  amplitude information can be obtained from the

detector voltage-t ime his tory  recorded on an oscilloscope . The

voltage to temperature conversion is determined from the static

calibration curves for each sensor , and knowing the amplifier gain,

the temperature  jump,  AT , can be determined by measuring the

voltage amp litudes f rom the osci]loscopc t races .  In this manne r ,
ATplots of shock s t rength  
~~T~~

’ versus shock ‘Mach number-’ (wave

speed divided by the-local second sound acoustic speed) an d ahi o

heater input power versus  Mach numbe r can be obtained.

_ _  —- - — - U  

•

-- : -  - 
~~~~~~~~~~~~~~



- 46-

UI. RESULTS -

The quality of the signal produced from the superconducting

detectors is demonstrated in Figure 6. - It shows the response of a

tin on gold sidewall detector ~o a heat pulse propagating throug h the

liquid. The wave is travelling f rom right to left in the photograph

and the second sound shock can clearly be seen to be at the front

of the pulse. The heat pulse in Figure 6 was generated from a

square voltage pulse, similar to the one shown in Figure 3, however

of 100 ~.isec duration. From the fast risetime of the shock (the

risetime measured from the photograph is limited by the amplifier

bandwidth , the actual risetime is much less than a microsecond)

and the low noise level of the signal , very accurate measurements

of the wave speed can be made .

Figure 7 shows a series of heat pulses , all produced by

rectangular voltage pulses , and it can readily be seen how the heat

pulse shape develops as it propagate s along the tube. In exact

analogy with corresponding piston produced pressure shock waves

in gases , it is evident that the trailing edge of the pulse catches up

to the shock front .  One interesting feature to note in these

oscilloscope traces are the small pulses following behind the heat

pulse. These “blips ” appear in all traces and can be seen to

overtake the heat pulse and eventually ride on top of it. These

pulses will be discussed in greate r detail later on.

- Also in analogy with ordinary pressure sound waves , the

second sound shock wave s reflect from an endwall with a cor-
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responding doubling of the amplitude . Figure 8 shows heat pulses

reflecting from a solid endwall . The detectors in these photographs

are tin on gold sidewall detectors and the upper trace in each

oscillograph is a sidewall detector closest to the heater , while the

lower trace is one closest to the endwall. Figure 8a shows the

reflection of a 10 rnsec long heat pulse while Figure Sb shows 100

~isec pulses. As before , wave propagation is to the left and the

incident wave (on the left) and the reflected wave (on the right) are

both clearly visible. The temperature amplitude doubling is

readily seen in Figure 8a.

Also apparent in both photographs are the “blips ” mentioned

above , and the existence of both positive and negative “blips ” is

clearly evident.

Figure 9 shows oscilloscope traces of heat pulses of various

lengths from 250 ~isec to 10 msec. There seems to be no qualitative

difference in pulse shape from short pulses to long ones e:ccept that

the trailing edge never overtake s the øhock front  in the very long

pulses , at least in t h e  ength of the shock tube .

A superconducting detector was mounted on the end of a probe

installed in the cente r of the shock tube in order to investigate any

difference in waveform that may exist between the center and

sidewall of the shock tube . Oscilloscope traces cf the detector

output are shown in Figure 10. The lower traces are the cente r probe

outputs while the upper traces are the sidewall detector outputs.

Figure lOa shows 100 ~ sec long heat pulse, and Figure lOb shows

1 — —-~~~~
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10 msec pulses.  In Figure lOb there appears a significant d i f ference

between the center and sidewall traces. While thi8 difference is

also seen in Figure lOa , the effect is more easily explainable using

the longer pulses shown in Figure lOb. Referring to Figure lOc ,

we note the wave shape : afte r passage of the shock f ront , the pulse

stays flat for a time of 0. 0205 msec corresponding to a length of

0.42 mm (using the second sound acoustic speed C2,-, 20.41 rn/sec

for a bath temperature of 1.65° K) or one-half the width of the

cente r probe end . The temperature  amplitude decays to one-half

the initial amplitude (height h in the drawing ) in 0. 089 msec

corresponding to a distance of 1.817 mm or one -half the length of

the sensor strip. From the data collected in endwall measurements,

it was found that an end-mounted detector output is twice the

amplitude of the incident wave , as was seen f rom an examination of

the reflected wave traces in Figure 8. Howeve r , due to the fact

that the detector does not occupy the entire area of the shock tube ,

diffracted wave s will be generated at the edges of the detector as

the shock front passes , as shown in Figure lOc. These waves

cause the amplitude of the reflected wave measured by the end -

mounted probe to decay until the amplitude is that of the incident

wave . This is the behavior clearly seen in Figure lOb.

As mentioned earlier , a series of alternating positive and

negative pulses appears following every heat pulse. Although no

conclusive evidence has as yet been obtained, results thus far lead

to several possible explanations as to their origin.  Perhaps the

most plausible origin of these pulses is possible diffracted

V
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waves generated at the edges of the thin film heater, where the

shock tube joins the substrate. Although the wavelength of the

“blips ” and the spacing between the ones in the series do not exactly

match the expected value s for d i f f rac t ion  waves , the numbers are

close enoug h so as to not be discounted. Attempts were made to seal

the joint between the heate r film and shock tube ; however , it could

not be determined if the joint  was properl y sealed against a

“superleak”, and since the pulses still appeared , no conclusive

results were obtained. The small pulses are definitely not generated

by the heater , as there is no possible way to generate a negative

temperature wave (below ambie nt t empera ture)  using an electrically-

excited heater. As can be seen from an examination of the heater

voltage pulse , shown in Figure 3, there is no evidence of any

extraneous pulses which could be causing these “blips ”. One othe r

possible explanation is the small pulses are evidence of some sort

of motion left behind in the wake of the heat pulse , po&sibly

indicative of vortices generated by the passage of the second sound

shock pulse. More work needs to be done in order to be conclusive

as to the origin of these pulses.

ATFigures 11 - 14 show plots of shock strength , —
~
j-- versus

the ratio of shock wave speed to second sound speed (called “Mach

number” in analogy with ordinary gasdynamic shocks) for various

detectors and detector locations. Figures 11 and 12 are for end

mounted detectors , Figure 11 showing the results obtained from an

endwall mounted tantalum-on-t i tanium detector and Figure 12

showing an endwall t in-on-gold  detector along with the results from
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the center-probe, also an end mounted t in-on-gold detector. While

the qualitative shape of both plots is essentially the same , the shock

amplitudes give n by the tin-gold detectors are much higher than

those from the tantalum. This discrepancy can be explained by

considering the composition and construction of the two type s of

detectors.

The tantalum-titanium detector is fabricated by depositing

tantalum on top of t i tanium which had been deposited on a silicon

substrate . The tantalum is then anodized to a certain depth to

produce a superconduct ing transit ion temperature in the desired

range. This produces an oxide layer on top of the actual supe r-

conducting detector stri p which acts as a thermal insulator for the

detector. Hence the detector cannot measure the full temperature

jump produced by the shock. In addition , the silicon substrate is an

excellent heat conductor , which enhances this problem. To

verif y this , a tantalum-titanium detector was fabricated on a glass

substrate which resulted in significantly hi gher amplitudes.

Plotted in Figure 12 are data from several different

experimental runs as shown , and for three heat pulse lengths:

100 ~ sec , 3 msec , and 10 msec. As can be seen from the data ,

there appears to be no appreciable difference in the behavior of the

shock wave for the range of pulse lengths used in the initial l inear

region of the plot. However , the data seem to indicate that the

shorter , 100 p.5cc, pulses were capable of reaching a highe r

temperature amplitude than the longer pulses. Although more data

- -.-‘ —,__
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I

need to be obtained, other experimental runs seem to support this

observation.

The development of a critical limit of shock strength in the

region 1.04 4 M ( 1.06 is clearly evident in both figures. This

behavior will be discussed in greater detail below.

Fig ur e 13 shows a plot of shock strength versus Mach number

for a sidewall-mounted tin on gold detector for two different

experimental runs. Again the development of this critical limit in

shock strength is evident. Note that the temperature amplitudes

shown here are one-half those of the endwall measurements, as is

expected. Also shown for comparison is a calculation of the shock

strength versus Mach number as given by Khalatnikov (10)  and

developed above . Recall that

C2 C~~ [1+ r~~(C~ n,)].
Now with = —

~
j
~ 
, we can write

M - ~~~ - 1 + ~.i. 1~ ~r + 
a C~c, + - ‘- 

C~, 
- T L2 C20 ST 2Cr, 8T 2

The derivative, appearing in the brackets can be calculated by using 
-

the result from Chapter I for C20 and the definition of p5 = p -

to give -

c 0 (-e - i) s
2 ‘r

___- —-‘—_-— — ———— — - - - - — —  — — 5--— — - — -- 
- 
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p
This give s M in terms of temperature derivative s of .—~~ and

C~~. which have been tabulated by Maynard ( 15).  Evaluating the

expression for M at the initial temperature of 1.65° K and the

corresponding saturated vapor pressure , we find for M in terms

of the shock strength

M = 1 + 1.4704

which is shown in Figure 13.

The discrepancy between the calculated value s of and the

measured values can again be explained in terms of an insulating

oxide layer existing on top of the detector film. -

Since the detectors are calibrated unde r static conditions it is

not clear that the calibration is valid for the existing dynamic

passage of the heat pulse , since in the static case , the film substrate

has time to come to equilibrium with the liquid helium bath , while in

the actual shock wave case , this certainly does not occur , and hcnce

the film may not be responding properly to the shock amplitude .

This could easily be analyzed using the heat equation; however ,

reliable data for the thermal conductivity and thermal diffusivity
0

could riot be found for these materials at liquid helium temperatures.

Shock wave speed , deter mined by measuring the time of flight

between two sidewall detectors , as opposed to measuring time of

flight between the heater and detector as in the previous cases, is

plotted with shock strength in Figure 14. These data were obtained

using gold on tin detectors in order to attempt to further reduce the

oxide layer which forms on the tin due to exposure to the atmosphere . 

- - - - - - -
— -
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However , due to the relatively thin (250 A) layer of gold , and the

apparent intermingling of the tin and the gold rather than a gold

layer forming on top of the tin , a tin oxide laye r is still definitel y

produced. Also, since the problem of the response of the substrate

to the wave passage, as already discussed , still exists , the

temperature amplitudes measured still are below the calculated

values. -

The qualitative appearance of the data , however , is considerably

different in Figure 14 than in the previous plots . Whereas in the

previous figures , the data fold over , but with an apparent increase

in wave speed for the same shock strength, no such behavior is seen

in Figure 14. In fact , for increasing heater power i nput , the shock

strength increases to a maximum value , = 0.0 197 in Figure 14,

the n folds back on itself unlike the previous measurements. In

orde r to distinguish the higher heat input data (folded portion past

the critical l imit) from the lower heat values , a different  symbol has

been used for these points . Thus , a unique shock strength implie s a

unique wave speed , as would be expected. One plausible explanation

for the difference between the two curves (heater to detector and

detector to detector measurements ) is liquid helium boiling

at the heate r surface . For the higher amplitude pulses, the

liquid helium definitely vaporize s at the heate r sur face (verified

visually and by an audible “clicking” sound). If the wave speed is

determined by ~neasuring time of flig ht from the heate r to detector

and there is the formation of a vapo r bubble , then the actual time

__ —- —5- -  -~~~~ --~~ -- —-- -  --
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of flig ht of the wave may not be properly de termined. This situation

is eliminated by measuring time of flight between two detectors

placed far enough downstream so that the shock wave passes by

af ter the heater boiling has stopped. Further verification of this

phenomenon is obtained using pulses of 10 macc duration. The

heate r boiling ( i .e . ,  the voltage pulse to the heater)  has not stopped

before the shock wave passes the detectors and a folding in the

curve , similar to the heater to detector case, is observed.

The apparent critical limit in shock strength seen in the data

presented could be attributed to liquid boiling behind the shock wave .

Since the experiment is conducted at the saturated vapor pressure

with only the head of liquid helium above the shock tube , calculations

indicate tha t certain combinations of large amplitude shock waves

with lowe r levels of liquid helium in the bath could result in boiling

behind the wave . This would indicate that in order to increase the

heat pulse amplitude , a pressurized system is necessary.

Anothe r explanation for the peak in the shock strength is the

reaching of the critical limit in heat flux , or counterfiow velocity

w, as discussed above . While the magnitude of the critical Mach

number does not appear very large, the dependence of the heat flux

in the wave on the counterflow velocity produced by the shock is

very pronounced , as indicated in FIgures 15 and 16, where heat

fl ux is plotted against shock Mach number (and hence the cowiterfiow

velocity, w, which depends on M) for the heater to detector

measurements (Figure 15) and the detector to detector measure-

- -~~~~~~~ 
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ments (Figure 16). The heat fluxes plotted in these figures are

calculated in the following manner

Recall that the heat flux can be expressed as

Q p5s T w .

From the expression for w

w = C20 T

the heat flux can be written

6 = p C 20 C T ~~~~~, 
-

or 

= Pc2~~~~~~~T ) (~~~~
) 

~~~~~~~~.

For T0 = l . 65° K

Q = 9. 1407 x l~~ 
AT Watts

Since is related to the Mach number M, Q can be expressed

in terms of M if desired.

Since the counterflow velocity, w, is related to the shock
ATstrength 
~T~ ’ we can calculate the value of w for the critical

limit of in the data. From

w - 1~~ e~~ !I1~1i.. ~n C2oJ T

1’
5- -~~~~~~—



- 5 6 -

m ATwe compute a Wmax 2 . 5 1  for = 0.018 and

T = 1.6420° K. This value of w is at least one order of0 max

magnitude greater than previously found for steady channel flow. If

the value of w is computed using the Mach number at the observed

ATcritical point, which can be related to 
~~~~ 

by Khalatnikov s theory,

then a value of w = 3.77 rn/sec is obtained , which is even greater

than before. Hence , since the critical heat flux is related to the

critical counterfiow velocity, it would be expected that heat fluxe s

at least an orde r of magnitude greater  can be t ransported ur ing

pulsed techniques.

If we assume the Dimotakis similarity is valid for thi s geometry,

then a length scale is needed. At least close to the shock front , the

critical value for the counterflow velocity cannot depend on the tube

dimensions. Hence , the only apparent length scale entering the

problem is the shock thickness. Provided the peak in the shock

strength data is the critical condition , we can apply the Dimotakis

similarity to calculate the shock thickness. Recall that the similarity

parameter is expressed as

p A w~
L = conat I

or

wcL =

where A is the Gorter-Mellink constant. Using the value of wmax

= wc = 2.51  rn/sec calculated above , we arrive at a length , or shock

r

— * -
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thickness, of £ = 5.42 p.. Moreover, using the adjusted value of

W = ~~~~~~~~~~ m/sec , we compute a thickness of 3.61 p..

Figure 17 shows a plot of heater power versus shock Mach

number for two different pulse lengths obtained from detector to

de tector measurements .  It is apparent that the same peak appear s

in these data as in the amp litude measurements.  Very similar data

has been publis hed by Cummings et al. (7) and the agreement is

extremely good. They find a folding in the curve at the same heater

power (about 20 - 30 Wat ts/cm2 ) as is shown here. Note that the

initial part of the curve is linear , in agreement ~~th the theory. Also

noteworthy are the apparent oscillations in the data for the 250 p.sec

pulses after the peak in the curve. This behavior was also seen in

the data from the center probe measurements , shown in Figure 18.

These oscillations can be correlate d to the “blips ” mentioned above

catching up and overtaking the heat pulse. As the al ternating

positive and negative pulses overtake the heat pulse and shock f ron t ,

the data undergo the oscillatory behavior shown. There are not

enough data to be conclusive as to whethe r this effect is caused by

the “blips ”, or both caused by a third phenomenon , or whethe r the

correlation is merel y coincidental.

-~~~ - - -  - — —5-’-— 5-- —5--—— -
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IV. CONCLUSIONS

A facility to study second sound shock wave s was designed and

constructed. Preliminary measurements using superconducting thin

film detectors indicate the existence of a critical breakdown of the

“supra heat conductivity” of the liquid helium II at much higher heat

fluxe s than previously measured in the steady flow condition. The

ability to transfer larger amounts of heat using pulsed technique s is

of great technological importance. Qualitative confirmation of

Khalatnikov’s linear theory was accomplished, and agreement with

other known results was established. Performing these measure-

rnents in a pressurized system will definitely shed more light on the

question of critical breakdown, as the boiling problem encountered

in this investigation will be eliminated.

_ _ _ _ _ _ _  
_____________________________- 

~~~~~~~~~~~~~ ~~~~~~~~~~~~~~ 
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FIGURE 2 TYPICAL NICHROME HEATER WITH
COPPER LEADS
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FIGURE 4 TYPICAL GOLD ON TIN SIDEWALL
DETECTOR SLIDE
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T0 = I .64 ° K
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FI G U R E  6 TYPICA L OSCILLOSCOPE TRACE

OF SECOND SOUND SHOCK WAVE
AS MEASUR ED BY A SUP ERCONDUCTING

DETECTO R 
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l00~~sec/div I00~~sec/d iv

7c. 4.70 mK/d iv 7d. 9.45 mK/div
I0O~~ sec/div tOOts. sec/div

T~- 1.64 ° K

FIGURE 7 TYPICA L VARIATION OF HEAT PULSE SHAPE AS

TRAILING EDGE OVERTAKES SECOND SOUND SHOCK
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lower trace : 500 m volt/div
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Pulse

Sb. upper trace : 100 mvolt/div
- 

- 
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FIGURE 8 OSCILLOSCOPE TRACES SHOWING SECOND SOUND
SHOCK WAVE REFLECTION FROM AN ENDWALL
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500 ~ sec pulse duration

1.35 mK/div

200 ~h sec/div

10 m sec pulse duration

1.35 inK/div

200 ~ i sec/div

FIGURE 9 OSCILLOSCOPE TRACES OF TYPICAL HEAT PULSES
GENERAT ED BY VARIOUS DURATION ~~LTAGE PULSES,

T0 l.64 K
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i

100. l00~~eec pulse lOb. 10 rnsec pulse

upper trace: 3.34 mK/d iv , sidewall detector
lower trace : 5.09 inK/div1 center probe detector

horizontal: 200 
~
.i sec/div

T0~~l.63°K

-
~~~~ ~~-O.O2O5msec

I I Csnt Second Sound

— I ~~~~~~~~~~ \~Shock Wove
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FIGURE 10 SECOND SOUND SHOCK WAVES AS MEASURED
BY SIDEWALL DETECTOR AND CENTER PROBE
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SECTION D

Theoretical Calcula tion of Second-Sound

Shock Wave Structure
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Section D

LIST OF SYMBOLS

a1 first sound speed

a11 second sound speed

C specific heat

p pressure

s specific entropy

T temperature

U shock velocity

v bulk fluid velocity

v normal fluid velocity

v~ superfluid velocity

w relative velocity

a absorption coefficient of second sound

6 - shock thickness

normal viscosity

thermal conductivity

p mass density

9 shock strength

Is chemical potential

C~ ,Cs ,Cs second viscosities

a angular frequency

normal fluid
C

s~ p.rfluid

.q~ dkb r~ im state wh.re w 0

•~m SM. wher e w # 0
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Section D

LIST OF SYMBOLS (cont. )

)I perturbation from equilibrium state

} jump between equilibrium states

(~~) thermodynamic function of w2
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I. INTRODUCTION

One of the most unusual and useful properties of liquid Hel ium II is

its ability to propagate heat as a temperature wave. This method of

transporting heat -is totally analogous to the distribution of density

perturbations inany fluid by pressure or “sound waves ’. And just as

finite ampl itude pressure waves will steepen into shock waves , finite

ampl i tude temperature waves in He II will steepen into “second sound shoc k

waves ” . The structure of these temperature shock waves is the subject

of the following discussion.

Calcula tion of shock waves in a compl ex medi um such as Hel ium II

can be done using techniques from singular perturbation theory. The

solution sought is one consisting of two equilibrium states which are

connected by a thin shock layer or shock front. The jump conditions

between the two equilibrium states form the outer solution , whi ch Is

gotten by neglecting all the di ss ipative terms . These terms are zero

in the outer solut ion s ince there are no gradients i-n any of the dependent

variables in the equilibrium states. Gradients do exist and are Important

in the shock layer. In fact It Is the balance between the dissipative

terms and the nonl inear steepening terms which governs the shock

structure.

The model of Hel ium II , which serves as a starting point for the

follow ing calculat ions , Is the two fluid theory as set down by 1. D. Landau.1

The derivation begins by integrating the steady, one-dimensional equations

for a superfluid and then evaluating the constants of Integration using

values for one of the equilibrium states. This results In the shock

___ 
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equations presented in tabl es 3 and 4. Next the shock equations , in the

linearized dissipatlonless approximation , are solved to obtain solutions

for steady, f irst and second sound waves . These solutions shows that,

to first order , the quantities characterizing a second sound wave are

perturbations in the temperature, entropy, normal mass fraction, and

relative velocity between the normal and superfluid motions; variations

in pressure and density are of higher order. Because this is a linearized

solution to a set of basically nonlinear equations, the results are valid

only in the limit vanishing ampl itude. Finite-ampl i tude waves , which

steepen thru nonlinear processes into shock waves , have an ampl itude-

dependent velocity . The shock velocity can only be calculated if the

nonl inear terms are retained. This is done for second sound shock waves

by solving the dissipationless shock equations to second order in char-

acterizing variabl es: 1’, s’, ~~‘, w .
In the shock layer the gradients become very large so that even

though the kinetic coeffic ients are small, their products are dominate

terms In the equations. These dissipative terms are of order (11)2 “~w
2;

that is they are second order in the characterizing variabl es for second

sound. Therefore, to balance these terms, the shock equations must be

solved with all the other second order terms being retained. The order

of the dissipative terms depends on the fact that for weak shock waves,

the shock thickness is Inversely proportional to the shock strength, 0,

which will be taken as the temperature jump normalized by an equilibrium

state temperature. (This fact will be derived later when the method of

stretching and matched asymptotic expanslo.s is used to solve for the

- — —~~~~~~~-- _—,- — — — — —  - — 
- -
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shock structure.) The shock layer must therefore be scaled by i/o , which

means the derivative with respec t to the spatial dimension , x , must be

order 0. Since the temperature and velocity perturbations are also of

this order their derivatives must be order ~~ w2. 
-

_  
~

_ ._ _ :
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II. DERIVIN G THE SHOCK EQUATIONS

Calculation of shock wave jump conditions traditionally makes use of

conservation equations for mass , momentum , and energy ; these quantities

are conserved from one equilibrium state to the other across the shock ,

even though the details within the shock itsel f may be unknown. The

same approach is appl icable to temperature shocks in He II , except in

this case an additional equation describing the superfluid velocity

field must be incl uded.

The major problem in calculating the shock conditions in superfluid

Helium arises because the thermodynamics of this liquid are not comDletely

known. The thermodynamic variables of He II are functions of two ordinary

var iables, like pressure and temperature, plus an extra variable--the

relative velocity between the normal and superfluid motions. Thus, the

thermodynamics of He II are intrinsically connected with the velocity

fields; that is , there is no way to separate the thermodynamics from the

velocity f ield dependence, such as can be done with an ordinary one-

component fluid. This leads to complicated equations , but does not

represent a fundamental problem in the calculations. 
- 

What is more signif-

icant, -Is that the dependence of the thermodynamic variables on the

relative velocity is not known. The only recourse to date ha~ been to

expand the thermodynamics in terms of w, the relative veloc ity, which

must be assumed small In some sense. This was done by Landau’ and is

reproduced in Table 1. It should be noted that the thermodynamics are

expansions in the square of the relative velocities and that only the

coefficients for the terms second order in w are known. This makes it

~i 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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TABLE 1
I - Thermodynamic Functions Expanded in Terms of

the Relative Velocity

~(p,T,w2) = ii (p,T) - w 2 + O(~/’)

‘
~(p,T,w2) = s(p,T) + 

~~ ~~~ 
+ O(w~)

p (LT,w ~ 

= p (p,T) - ~~~~w2 +

~ (p,T ,w2) = ~(p,T) + O(w~’)

—

p

where

— a
F
1 = (j~r )p

p 

NOTE: When the generalized thermodynamic variabl es, which are funct ions
of pressure, temperature and relative velocity, are used in context

wi th the variables that can be measured , which are functions of pressure

and temperature only, then the former will be denoted by a tilda as

shown above while the latter will be left unadorned. 

—-~~~~~~ - -  
- - - - - -
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TABLE 2

The Steady, One-Dimensional Form of the

Two-Fluid Equations Including Dissipation

MASS :

MOMENTUM: ~~~{a’v2 + 
I S  w2 + p + t].

= 0 
-

SLJPERftUID: 
~~~~~~ 

+ ~~ v~ + h ] = o

ENERG Y: + -~~ v~) + + ~‘~v~w + QI]  
= 0

where: j 
~v ~~~~~ +

w~~~vn - v s

= -4n +
~~2) ~~~~~~~~ 

~~~(~~w) - -

-

h = -
~~~~~

. (~~w) —

dv dvdl ,4 n n
Q = - TI + 

~
2)v n ~

1_ + C 1p
5

W ~~~~~

+ ~iv~ ~~ (~ 5w ) - cap
~

w ~~ (~~w)
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possible to solve the shock equations to third order in w , but no higher.

Since w is a first order quantity in a second sound shock wave , this

necessarily means that the. results to be obtained are valid only for weak

temperature shocks . -

The followi ng derivations are done in the reference frame which

travels along with the shock wave--the shock-stationary frame. In this

reference frame the shock profile is assumed steady. In the l aboratory

frame , where the undisturbed fluid is at rest, the shock will be travel ing

in the negative x—direction; that is, the shock velocity , U~, will be

negative. In the shock-stationary frame the mass flux , j ,  therefore

will be in the positive x-di rection.

T0 

=
~~~ 

T1 

~~~~~~~~~~~~~~~~ 

Io
Front Steepened Bac k Steepened
TEMPERATURE RAISING SHOCK TEMPERATURE LOWERING SHOCK

The shock profiles for two types of temperature shocks possible in He II

are shown above. The front steepened one is a temperature raising shock

in which the entropy density following the shock is greater than before

it. The back steepened one is a temperature lowering shock; In this

case the entropy density is decreased following passage of the shock

front.

In the chosen reference frame the applicable equations describing a

plane shock wave are the steady, one-dimensional form of the conservation
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equations previously mentioned. This set of equations is reproduced as -

Table 2. The dissipative effects are included so that a shock profile

and thickness can be calculated. The form of the dissipative terms

follows from a consistent derivation made by Landau and Khalatnikov2

which requires the assumption that the superfluid is free of vorticity ;

this is no restriction in the analysis which follows.

The one dimensional equations are easily integrated and the constants

of integration are evaluated for the equilibrium state where the relative

velocity is zero. This state w111 be indicated by a subscript zero. The

other equilibri um state will be denoted by a subscript one. Unsubscripted

variables will be considered as functions of x. For example, the inte-

grated equation for mass conservation is:

(1) j  ~~ v =  —p 0 U5 
-

This can be solved for the bul k velocity, v , to get:

—P0
(2) V = —

~~~
— U~ = 

~~ 
+ ½po U5W

2F~ + 0(w~)p

where the last step was to expand the density in terms of w2 . The therino-~
dynamic variables without the tilda are functions only of pressure and

temperature. The other three equations can be Integrated and expanded in

terms of w2 ; then the bulk velocity, v, can be eliminated by use of the

previous formula. The resulting “shock equations” can be found in Tabl e

3. Two equations which are linear combinations of the three original

shock equations and which are useful when calculating second sound shock

waves are presented in Table 4.
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The same procedure of expanding in the relative velocity and then

eliminating any bulk velocity dependence must also be applied to the

dissipative terms , -r , h, and Q’. From the definition of v~ we have :

V E V +  . w =  v +  _
~~w+O(w k)

By using equation (2), the normal fluid velocity can be expanded in terms

- . - - 
- - 

- of w and the shock velocity with the result:

P~ P
- . 

- ( 3 ) v~ 
= -— Us + w + ~p0U5w

2
~~ + O(w~)

When calcula ting the derivatives , use will be made of the fact that

the shock thickness is Inversely proportional to the shock strength. For

-
- - 

-

~ second sound shocks this means that the spa tial dimension, x , is scaled

by w~~:

d

With th is  s i m p l i f i c a t i o n , the normal velocity gradient written out to

th i rd  order in w is:

(4) ~~~ v~ (p
5
W - p 0 U

5
)~~~~~ 

1.

The product of the normal vel ocity with equation (4) is:

dv
(5) vn = U

~ 
(p0 U5 

- 2 p 5w) 
~j 

1 + 4 (p5W - ~0U5) ~~

- ( ½ p~~J~~) ~~~~~~~~~~ + O(w~)

L - - -—- - -- -—
~~~~

--— ---—------
~~

- — —  — -  - -—- -— -— - -- - - - - -—--- - ———-—- - - - - —
~~~~ .- 

----- ----- - -  - -
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These results allow for further expansion and simplification of the

kinectic fluxes which are valid for second sound shocks. These expansions

are reproduced in Table 5.

p -

_ 
_ _  -- - - - - - - -  --

- 
_

_
~I~

_ iI_ :_
~ 

- - ---a
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TABLE 3

Shock EquationsL
MOMENTUM

p—p p0 p0 - - p p  p 0

pU2 
= (‘ - 

~~
) 

~~~~~ 
- 

[ 
~~ 

- 

~~ (½p oU~ ~p)] 
(
~-~ - 

~~~j~
-
~~

- +O(w~’)

SUPERFL UID

1i
~~ii0 = ½ 

j
~

l - (
P O

)
2~ - ~!! ~~

. (
~-) + ½ 

[p2 
+ 

~~ (~ oU5~~)] 
( W )2

+ ~~~ (p~U~~~) (~~-.)3 - i:~
i2. + -O (w~)

TOTAL ENERGY

sT - s 0T 0 
= 
{(
~~~ )2 + ~ .!a 

~~ 
- 

[2 —~~
. + ½(..2~. T~~) ]  

fl 
(
W
)
2

+ 
[(

PS
)
2 

+ ½ -
~~~~~ 

(
~~ ~Tr

~ 
- ~! (pou:) 

~

+ Q’ + jj~r + O(w~)
p01J 5

3 s

NOTE : Since these equations make use of the expanded thermodynamic

functions , they are strictly valid only when the relative velocity is

small.

~:

__________ ___________ ________________— —-——-_________
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TABLE 4

Shock Equations Useful for Second Sound
Shock Waves

“W ” EQUATION

( ) - 
(~~~

—
~~~~~ 

= ½ (1 - Q)2 
- 

~~~ 
(-

~~
_) + -~. !~1!~!. (W f

U2 pU2 0 p p 
s S

+ ~ (poU~ ~ ) (~~ )
3 ~~~~~~~~~~~~~~~~ 

~~~~ + O(w~)

MODIFIED ENERGY EQUATION

+ 
sT-So To 

- 

P-Po 
= ½( 1 - 

0
)
2 

+ 
~~~~~ .~2t (k-)

_ ½ [ - ~ + (_E. T~~T)] 
fl
(
W
)
2

+ + ½(~ — ~1T)]  (~~~)(~~!)(~~..)
3

+ 
~~

.1j-

~~

- + 0(w~)

-~~~~~~~~~~~ - - - -~~~~~ — —- - -~~~~- - - -~~~- - - - —  ~~~~~~~~~~~~~~~~~~~ -— — -— - - 

_ _ _ _ _ i 
~~~~~~

-
--
~~~~~~ ~~

— -
--

~~~~~~ - -- -
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TABLE 5

Dissipative Terms for Second Sound Shocks

= — (~~n+ C2)(P5W — Po05) ~~

— (~ n+c2 - Pti) ~~~~~~

- ½(~~ n + C2) p~U~ ~~ 5,
w2 + O(wL )

h = - — PoU~) ~~~
- (Ci PC3)

- ½ ci ~oU~ f E w 2 + O(Wk)

= - K - (~~n + C2) ~ (po Ut) fi
+2 (~

.n + c2 _ ½ p c i )~~
.2.(p Sw U S)~~

. 
~~
-

4 
_ _  

d+ (~~~~~
+ C2 — Pci) 9z! ~~

— (~ n + C2 — 2pci + P2C3) ~~~~
— 

~~~~~

+ (~~~
+ c2) ~~~~~~ (½ poU~) ~~ + O(w~’)

NOTE: These equations , besides being expansions In the relative velocity,

make use of the fact that d/dx is of order w. Thus these equations are

strictly valid only for weak second sound shock waves.

-~~.- —.----—w.--—-—— — .-.
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III . LINEARIZED SOLUTION

Now since the shock waves under consideration are assumed small , the
thermodynamic functions may be expanded further in terms of pressure and

temperature perturbations, p’ and T’, def ined by:

T~~ T0 +T ’

For l iquid He II the coefficient of thermal expansion is very small.

Therefore It will be neglected In the calculations to follow. Note that

the assumption that the coefficient of thermal expansion is zero is

equivalent to assunmiing that the entropy Is a function only of temperature

and that density Is a function only of pressure. Al so the specific heat

at constant pressure and volume are equivalent and will be denoted by C.

Table 6 lists a set of thermodynamic perturbations expansions when this

assumption is envoked.

In order to see the role the various thermodynamic variables play in

the two forms of wave motion occurring In He II, a solution to the

linearized equations will be sought first. To do this the shock equations

of Table 4 will be expanded In terms of the pressure and temperature

perturbations with only linear terms being retained. Now to solve for

the Jump conditions, the perturbations p’, and 1’, and w, will become

the differences between the two equilibrium states:
, 1

,

T’ ÷T 1 - T 0~~~ T

w +w 1

~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~- ~~.S~~
’

- . 

S
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TABLE 6

- - Thermodynamic Perturbation Expansions

Independent va~riables :

P P 0  + P ’ T T o  + T ’

where << 1 and << 1
po T 0

Expansions of dependent variables :

~(p,T) = 
~io 

— SoT ’ + 
~~~

— p ’ - (~~)o (T’)2 
~p~a~~o 

(~~S)2 ÷

s(T) = SO + (~ )o T’ + [+ ~~~ + c](r)2 .

~(p) = Po + +  (
~~~~~

)
(~~ S ) 2

+ .

sT - soTo : (s :C)0 T’ + [(~) +~j 
~~~1)2 

+ .

c’oa10
=

P P
= 

~~~~ 
- 

~~ 
- 

~~~~ + .

where C T(~~) = specific heat

a1 
= speed of first sound

_ a ~n _ aC1— 
~~~

NOTE: The coefficient of thermal expansion Is assumed to be negligible,

which ImplIes that entropy is a function only of temperature and density

is a function only of pressure. Al so under this assumption, the specific

heat ratio is equal to unity.

_ _ _ _  . ~~~~~~~~~~~~~~~~~~~~~~~~~



I
When this is done, all the dissioat ive terms will disappear because

they depend only on derivatives , which are zero in the equilibrium states.

Carrying out this procedure on the momentum, superfl u id and total energy
shoc k equations, yields the following set:

(6) 

1 

( i _ a~~ )
~ 

= 0

(7) ~~~ (
~ 

- a~~ ) ~~ 
- s 0~ r + - - —  aw = 0

(8) (si,~ + C~) AT - [
~~.2. s0T0 + u~J ~~! = 0

For a nontrivial solution to exist the determinate of the coefficients of

Ap, AT, and ~w must vanish. This requirement yields the following

characteristic equation:

( - 

U~~
) 

(P~~ 
S~T0 

- =

~ a1~ ~~~ ~ /

therefore :

U5 
=

or U~ ta110

where the second sound speed has been defined as:

(10) tI0s s21
1

a ~~~~~~~~~~~~

~~

The result of this linearized analysis is simply to find steady

first and second sound waves. Since a coordinate system in which the

wave was assumed steady has been used throughout , only steady sound or

- ~~~~~ .—~~~~~~
_ - 5- -- - — .--~~~~~~~~~~~~~~~~ -—~~ — 

- 
.
-
~~., ~~~ 

-
~ 

- - —5 — ________



-96-

shock waves can be foun d . Th is first res u l t i s not a shock wave s ince
there is no nonlinear steepening involved.

Using the second sound speed result in equation (8) yields the

following relation :

(11) aT U~ aW , for U5 = a110

which can also be written as:

( 12) 

AT 

, for U5 = a110

where o
0

Substituting this result into equation (7) reveals that the pressure

jump, ~p, is zero to this level of approximation. Thus the pressure
*jump in a second soun d wave must be of order w2 or higher. The only

first order quantities in second sound waves will therefore be fluctu-

ations of entropy, temperature, rela tive vel ocity, and normal fluid
fraction (p a/p).

* This statement must be modified when the coefficient of thermal expansion

cannot be neglected. In that case the pressure jump will be of order w

times the coefficient of thermal expansion which is still sma ll, although

not negligible.

‘H 
_  _  _ __

_ _ _

-

~~~ 

~~~~ ____________
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4 

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

IV. SOLVING FOR THE JUMP CONDITIONS AND SHOCK VELOCITY

When solving the shock equations to order w2 for second sound it is

useful to use the equations of Table 4, since terms involving pressure and

density are order w3. These equations expanded in tems of 1’ and w are:

(13) 
~~~~~~~~~~ U~w - s01’ = 3 

(
PflPS)1~2 - C1 T’U5w

+ C~~~ 
(~~~

1)
~~ + ~~ - - h + O(w~)

(14) C0T’ (
~~ ST)o i~ 

= - 

~ (}~‘)o 
(T’)2 + (SIC) SIC

1] 
1’

- 

~~~~ 
+ ç2_ TC1)] e0 w2 + +!. + O(w3)

The dissipative terms similarily expanded but restricted to second sound

shocks are:

4 C dw(15) ~~~~~~
- h = - 

(~~~~~~~~~~
+ -

~~~~~~~
- 2c~ ~~~~~~ 

(-
~~h ~~~~~ 

+ O(w3)

(16) ~~~~ + = - 
K dl + 0(w3)

p0U5 p po U5 ~~

From the first order solutions for second sound (see Eq. 12):

w 
POSO 

T’ + o(T.)2
pnous

This expression may be substituted into the second order terms of

equations (13) thru (16) to eliminate w, since the error involved will be

of third order. This substitution may not be made Into the first order

terms however, so there will still be a linear dependence of w in the two

shock equations. The result of this simplification is the following set

—.5 5,— ~~~~~ 
r 

—
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of four equations:

P

(17) (-~~)o U~W - so T’ = (4~)o [2 ~ - (
~~~ ~~~~ 

(11) 2 
+ - hPn

(18) C0T’ - (-f- sT) 0 ~~~

— = ~~~ 
~~ 

+ ~ ~ ~~~ ~~~

I
~~tj 2 -

3 ~n 
____- (

~~ +~~) (~
2_ T ~~)J (15) 2 

+ 
Q’ 

+ L
n PO US P

~ dl(19) L — h = - (-
~~ ~ + - 2c1 + PC3 ~~ (p~u5joa~P 3 P  P

(20) Q’ 
+~~~ . = — k dl

PO US P P0U~ ~i

Finally w can be eliminated by multiplying thru equation (17) by (T/s)0

and equation (18) by (1/C)0 (U 5/a11
)2 , and adding. The result is:

U2
(21) 

~~~~~~ 
- 1) TA T’ = + 

~ 
C 

- ~ ~~ ~~
) - ~~ (~~.!L + 1)(~2~. TCT)] (1’ ) 2

~ ~~~‘ T  2 PsI I0

+ (
~~~ 
I_Q’ + + (1 - h) (~-)~]~ p~U~ P P 5

Note when writing down the dissipati ve terms use was made of the fact that

these terms are of order w2 and that U~ equals a~10 p lus a correction of

order w.

From this point the jump equations can be simply solved by letting

aT and by noting that the dissipative terms disappear because two

equilibrium states are being used .

-j
~i

- - -~~~- - —~--— - -.. .-- -— —. 5— -  -~~~ -.5-— - — .- .5- - -

I’,.
—-5--- -~
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(22) ( 
4io 

- = [
~

+ 3 - 
~ ~~~~~~ 

- ~ (~~~!i+  1 ) (f— TCi)]~~
i

= {T fr log(a~1 ~)Jo 
e

This yields Khalatnikov ’s well known second sound shock velocity formula3:

(2 3) Us = ±a11 (1 + .
~
. boe)

where b(p,l) is a thermodynamic function defined by:

(24) b(p,T) T }Tr log (a~1 ~
)

This solution to shock velocity can be substituted into equation (17)

to yiel d a second order resul t for the rela tive veloc ity jump . Equa tion

(17) rewritten as a jump equation and solving for aw is:

(25) aij~ 
= (-~-~r)o U

~ ~~~ { 
1 + (2 C - 

~~~~ ~~~~

but from equation (22):

r b0
1F a

1 
[
1_ r e

s

which substituted into equation (25) yields :

(26) a~~ 
- (~~~ )oe{1 + ~~[2 ~ + (

~~~~~
) + (3~~ - 1)(.E~~ IC

1
) - i ] e~

= - (~~.~~)e{i + 

~
T
~~r[1o9 ~~ ~~(~~?J 0}

- ~~~- -~~ .~~ — 5— - .5—-— — — —-——— —. — —.5- — .— -. — - -
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V. SHOCK STRUCTURE SOLUTION

The shock structure can now be solved directly from equation (21)

which is rewritten below:

r u 2 1
(27) I - 1 I IoI’ = b0(T’)2

LaIr0 J

+ 
lo [

~
- + 

~~~ (~~
- n + — 2p~ 1 + ~~2~~~

3)]  ~I.

This equation can be rearranged with the aid of the shock velocity

result to the following nondimensional form:

(28) 
di:~ = e T - T 2

T-T0
where T To

b0

~
‘ a~10 A0 

X

(29) A(p, T) 
p41 [ 

~~ 

+ 
~~~~ 

(
~~ fl 

+ C2 - 2PCi + P
2

c3
)]

Equation (28) and the entire analysis which preceded, are valid only for

weak shoc k waves ; tha t is, the shock strength, o, mus t be much sma l ler

than unity .

The remaining question that needs to be answered before solving

equation (28) concerns whether quadratic or just linea r term s are required

to balance the differential term. The shock layer is a very narrow part

of the entire shock solution when expressed in the nondimensiona l variabl e

y; therefore it is useful to rewrite the equation in stretched

- 
- 

— —

. 5 - . - - - -
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coordinates as follows :

Set ~

Define f(~) such that:

T(y) = ~rc~ ~( e ) )  ef(~7)

Note that •(e), which is a measure of the shock thickness 1 is some unknown

function of the shock strength. Al so note, that the new dependent

variabl e is magnified by some function of the shock strength which in

this case must be o itself. With these substitutions equation (28)

becomes:

(30) 
•~~~

-

~

- = o2f - e2f2

Clearl y in order to balance the differential term , both the linear and

quadratic terms are required since they are of the same order in the

small parameter e. Al so, the shock thickness must be inversely propor-

tional to the shock strength:

(31) •= ÷
Finally equation (30) can be solved for f(V) to yield:

(32) cG) = 
~

- + .
~- tanh

When the original variables are resubstituted the shock structure is

found to be:

(33) 1(x) = 
~~ 

(T
~ 

+ T0) + 
~~ 

(T i 
- To) tanh

I
_ _ _  _ _  _ _ _ _ _ _ _ _S -_________ - - 5 - - 5 - --5--- - -5-.. - - — - - ---.5-
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4a2 A
(34) 6

The profile of a second sound shock wave given by equation (33) has

the same shape as an ordinary pressure shock profile for weak shock waves.

Al so the form of the shock thickness , 6, is totally analogous to the

ordinary weak shock case which has been calculated by Landau4. In both

cases the shock thickness is inversely proportional to the shock strength--

in the second sound shock case this parameter is the temperature jump

divided by the temperature of the initial rest state. Al so in both cases

the shock thickness includes a thermodynamic coefficient whose sign

determines whether the shock is a compression or expansion . For ordinary

pressure shocks this coefficient is the “fundamental derivative of gas

dynamics”, (a2p/~P)5, (where V is specific volume). For the second sound

case this coefficient is the thermodynamic function b(p,l) defined by

equation (24).

The analogy is made compl ete by the constant terms of proportionality

which are equal to the absorption of sound per frequency squared .

Khalatnikov 5has shown that the absorption of second sound is given by:

(35) a = ½w
2
pa~1 [ 

~~ 

+ 
~~ ~~~~~ C2 - 2p~~ + P

2
C3)]

thus

(36) A =

At first thought such a complete analogy between ordinary pressur~

shock waves and temperature shock waves in a superfluid may seem surprising

since the basic equations of motion as well as the thermodynamics of He II
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are very different from those of an ordinary fluid. This analogy how-

ever is not a coincidence, but is due to the fact that ~~ i both cases the

steady profile of a shock wave is due to a balance of the nonlinear

steepening effects by dissipative mechanisms. Furthermore it can be

shown qu ite general ly , that when a steady wave is formed by balancing

nonl inear steepening with some dissipative process-whether it be heat

conduction , viscosity, or diffusion ,--the result will be a shock wave

whose thickness is inversely proportional to the shock strength.

As stated previously, there are two basic types of second soun d

shock waves--temperature raising and temperature lowering--whose

occurrence depends on the sign of b(p,T). As saturated vapor pressure

and for a temperature above 1.880K b(p,T) is negative (see figure 1);

in this region temperature lowering shocks occur. Below 1.88°K to about

O.90K, b(p,T) is positive, which requires -that second sound shock waves

be temperature raising in nature.

A curious phenomenon happens where b(p,T) passes thru zero. Here

the shock thickness diverges as a simpl e pole because b(p,T) resides in

the denominator of 6 (see Eq. 34). A plot of the shock thickness,

normalized by w, is included as figure 2. It should be remarked that

near the infinity in shock thickness the analysis is strictly valid only

for infinitisimal shock strengths, that is for 0+ 0. ThIs is because

the fi rst order correction to the wave velocity, ~b(p,T)o, becomes zero

at this point making higher order terms Important. However the existence

of the infinity will not disappear, but only be shifted in temperature

by a higher order analysis. The reason this must happen is directly

—~ — --S ~~~~~~~~~~~ - ~~~~~~ —5— - — - — -
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related to the fact that the shock velocity must equal the characteristic

veloc iti es, both in front and back of the shock, at some temperature

and amplitude , 0. When this happens there is no energy feeding the

shock front, which dictates that a steady profile can only be maintained

if the wave is dissipationless. This can only occur if the gradients

van ish; tha t Is , the shock th ickness mus t become infin ite.

Near temperatures where b(p,T) = 0 the shock thickness will become

relati vely large which will aid experimental investigations of the shock

structure . However , to get a lar ger shock thi ckness requ ires a longer

time for the shock to steepen into a steady state. With this constraint

in mind , the shock thickness could be adequately measured and hence

compared with the theoretical value.

- -~~~~~~ - - S  ~~~~~ — - 
S -

‘~15. 
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Figure 1. The thermodynamic function b(p,T) at SVP.
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